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Abstract

The problem of programming an artificial ant to follow the Santa Fe trail is used as an example
program search space. Analysis of shorter solutions shows they have many of the characteristics
often ascribed to manually coded programs. Enumeration of a small fraction of the total search
space and random sampling characterise it as rugged with many multiple plateaus split by deep
valleys and many local and global optima. This suggests it is difficult for hill climbing algorithms.
Analysis of the program search space in terms of fixed length schema suggests it is highly deceptive
and that for the simplest solutions large building blocks must be assembled before they have above
average fitness. In some cases we show solutions cannot be assembled using a fixed representation
from small building blocks of above average fitness. These suggest the Ant problem is difficult for
Genetic Algorithms.

Random sampling of the program search space suggests on average the density of global optima
changes only slowly with program size but the density of neutral networks linking points of the same
fitness grows approximately linearly with program length. This is part of the cause of bloat.

Previously reported genetic programming, simulated annealing and hill climbing performance is
shown not to be much better than random search on the Ant problem.

1 Introduction

There have often been claims that automatic programming is hampered by the nature of program spaces.
These are undoubtedly large [Koza, 1992, page 2] and, it often claimed, badly behaved with little
performance relationship between similar programs [O’Reilly, 1995, page 8]. In this paper we present a
systematic exploration of the program space of a commonly used benchmark problem (Sections 2 and 3).
In Section 4 we calculate the number of fitness evalutions required by two types of random search to
reliably solve the problem and then compare this with results for genetic programming (GP) and other
search techniques. This shows most of these techniques have broadly similar performance, both to each
other and to the best performance of totally random search.

This prompts us to consider the fitness landscape (Section 5) and schema fitness and building blocks
(Section 6) with a view to explaining why these techniques perform badly and to find improvements to
them. In Section 7 we described the simpler solutions. Their various symmetries and redundancies mean
essentially the same solution can be represented in an unexpectedly large number of different programs.
Finally in Section 8 we consider why the problem is important and how we can exploit what we have
learnt and in Section 9 we give our conclusions.

2 The Artificial Ant Problem

The artificial ant problem [Koza, 1992, pages 147-155] is a well studied problem often used as a GP
benchmark. Briefly the problem is to devise a program which can successfully navigate an artificial ant
along a twisting trail on a 32 x 32 toroidal grid. The program can use three operations, Move, Right and
Left, to move the ant forward one square, turn to the right or turn to the left. Each of these operations
takes one time unit. The sensing function IfFoodAhead looks into the square the ant is currently facing
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Table 1: Ant Problem

Terminal set: | Left, Right, Move

Functions set: | IfFoodAhead, Prog2, Prog3

Fitness cases: | The Santa Fe trail

Fitness: Food eaten

Wrapper: Program repeatedly executed for 600 time steps.

and then executes one of its two arguments depending upon whether that square contains food or is
empty. Two other functions, Prog2 and Prog3, are provided. These take two and three arguments
respectively which are executed in sequence.

The artificial ant must follow the “Santa Fe trail”, which consists of 144 squares with 21 turns. There
are 89 food units distributed non-uniformly along it. Each time the ant enters a square containing food
the ant eats it. The amount of food eaten is used as the fitness measure of the control program.

The fitness function, function and terminal sets etc. we use are identical to [Langdon and Poli, 1997a]
cf. Table 1.

3 Size of Program and Solution Space

The number of different programs of a specific length is given by the size of the terminal set and the
numbers of different functions in the function set of each arity (branching factor). To create a tree of a
specific length a corresponding number of functions of each branching factor and number of leafs must
be used. Where there are more than one branching factor available in the function set, there may be
multiple combinations of function arity which give rise to a tree of the required size. In general there are
multiple ways of arranging the branches and leafs. Each way gives rise to a distinct tree shape. Finally,
where there are more than one terminal or more than one function of a given arity, there are multiple
programs of the same shape. The number of different programs in the ant problem is plotted against
their lengths in Figure 1 (and is tabulated in the “Total” row at the bottom of Table 2). As expected the
number of programs grows approximately exponentially with the length of the programs. (The program
used to calculate the number of programs is available via anonymous ftp from ftp.cs.bham.ac.uk in
pub/authors/W.B.Langdon/gp-code/ntrees.cc).

For the shorter programs it is feasible to explore the program space exhaustively. Table 2 summarises
the programs space up to programs of length 14. Table 2 shows the program space is highly asymmetric
with almost all programs having very low scores and the proportion with higher scores falling rapidly
(but not monotonically) to a low point near 72. Above 72 it rises slightly. The modal score is zero, the
median is one and the mean rises with length from 1 to 2.7 while the standard deviation remains near
4 (cf. Figure 7). There is some dependence upon program length and, as expected, programs must be
above a minimum size to reach modest scores. However above the minimum size the number of programs
with a given score rises rapidly, being a roughly constant proportion of the total number of programs.
There are an unexpectedly high number of solutions (albeit a tiny fraction of the total) and their number
similarly grows with program size.

For longer programs exhaustive search is not feasible and instead we sampled the program space
randomly in a series of Monte Carlo trials for a number of program sizes. For each such size between
10,000,000 random programs where generated and tested. The random programs where chosen uniformly
from the set of possible programs of the specific length using the bijective random tree creation algorithm
described in [Alonso and Schott, 1995, Chapter 4]. Where there are multiple different combinations of
function arity which give rise to trees of the required size, one was chosen at random in proportion to
the number of trees it contains. Each tree was converted to a program by labelling each of its nodes
with a function or terminal of the correct arity chosen uniformly at random from those that match in
the function or terminal set. In this way we ensure every program of the specified length has the same
chance of being chosen.
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Figure 1: Number of programs of a specific length (note log log scale)
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Figure 2: Proportion of programs of a given length by their fitness. Values for lengths 15 and above are
based on Monte Carlo sampling.
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Table 2: Number of Trees and Distribution of Fitness

Length
Score | 1 2 3 4 5 6 7 8 9 10 11 12 13 14

02 0 12 16 136 423 2262 10452 49088 252803 1227679 6443754 32595908 171997308

110 0 2 4 18 150 449 3058 13806 77269 380979 2070276 10954364 58002558

210 0 0 1 3 25 112 909 3429 21902 123174 646831 3587432 19987018

311 0 2 6 31 96 530 2779 11736 63996 318817 1656409 8501211 45339974

410 0 0 0 3 14 72 527 2526 16250 86999 501521 2820383 15927690

510 0 0 0 2 10 58 417 1844 13047 67895 390963 2213475 12466189

60 O 0 0 1 8 25 177 1155 6826 33174 216479 1248818 6766377

710 0 0 0 2 13 35 266 1601 8076 39428 240187 1324912 6872615

810 O 0 0 3 10 68 412 1818 10785 56857 303276 1580134 8846059

910 0 0 0 0 0 2 28 183 1392 8218 57485 348331 2053040
10|10 O 0 0 1 2 18 76 461 2758 12465 75079 406998 2276683
110 0 2 0 16 51 297 907 5876 27403 120960 659392 3245735 16642082
1210 0 0 0 0 0 3 52 190 1326 8296 45293 258390 1525769
1310 0 0 0 0 0 4 40 154 1203 8011 44681 266859 1548594
1410 0 0 0 0 0 3 24 105 770 5437 27113 169161 1041738
1510 0 0 0 0 0 9 75 150 1313 11513 41711 226363 1528861
16 |0 O 0 0 0 0 0 8 34 350 2584 15053 104018 654943
1710 0 0 0 0 2 4 35 167 1108 4962 33175 197400 1078896
1810 0 0 0 0 0 0 2 13 190 1764 11192 83119 570147
1910 0 0 0 0 0 0 10 66 593 3028 18180 101133 660977
200 O 0 0 0 2 4 20 105 763 3985 25601 179522 938185
21 {0 O 0 0 0 0 1 13 56 448 2501 16089 107227 581413
22 (0 O 0 0 0 0 0 16 71 639 2825 21205 129354 692285
23 |0 0 0 0 0 0 0 20 47 489 2372 15321 83764 509240
24 |0 O 0 0 0 4 12 47 293 1723 6688 39676 194484 1048249
25 |0 O 0 0 0 0 0 1 36 315 1586 10698 65746 359170
26 |0 O 0 0 0 0 0 2 23 240 1785 11356 76602 379975
27 |0 O 0 0 0 0 0 7 16 222 1262 8820 54491 306671
280 O 0 0 0 0 0 2 18 153 1049 7208 51024 258757
29 |0 O 0 0 0 0 0 0 11 118 605 4705 30333 184386
300 O 0 0 0 0 0 3 23 203 922 6483 40544 215169
310 O 0 0 0 0 0 0 12 120 624 5167 37145 191740
32 0 0 0 0 0 0 0 0 2 48 387 2859 21765 129411
33 (0 0 0 0 0 0 0 5 13 132 898 5315 31898 158423
34 (0 O 0 0 0 0 0 2 12 99 519 3648 23694 125950
35 [0 0 0 0 0 0 0 1 5 50 298 2490 20548 105190
36 |0 O 0 0 0 0 0 5 12 106 349 2905 16828 98260
37 |0 O 0 0 0 0 1 0 18 104 595 3189 20800 99885
380 0 0 0 0 0 0 2 21 183 637 4054 17473 106100
3910 0 0 0 0 0 0 0 6 79 226 1782 8274 54753
40 [0 O 0 0 0 0 0 0 8 79 267 1888 9477 56608
41 10 O 0 0 0 0 0 0 6 57 245 1682 8812 49873
42 10 0 0 0 0 0 0 5 11 92 263 1821 9083 51056
43 10 O 0 0 0 0 0 6 8 78 190 1688 7681 47354
410 0 0 0 0 0 0 0 0 11 109 808 4988 27119
45 10 0 0 0 0 0 0 0 0 11 84 756 3929 24649
46 [ 0 O 0 0 0 0 0 0 6 53 184 1165 5234 30441
4710 O 0 0 0 0 0 1 5 42 133 1068 6063 30738
48 1 0 0 0 0 0 0 0 0 1 14 62 532 2978 16510
49 10 0 0 0 0 0 0 0 0 4 30 293 1917 11133
50 |0 O 0 0 0 0 0 0 4 41 142 970 3467 20849
51 |0 O 0 0 0 0 0 0 5 38 122 748 2731 16387
52 |0 O 0 0 0 0 0 0 0 2 10 160 774 6193
53 |0 O 0 0 0 0 0 0 0 13 22 307 1287 8526
54 |0 O 0 0 0 0 0 0 0 0 1 26 128 1568
55 | 0 O 0 0 0 0 0 0 0 3 6 105 340 3437
5 [ 0 O 0 0 0 0 0 0 0 0 10 73 289 2082
57 10 O 0 0 0 0 0 0 0 0 6 58 617 2212
58 |0 O 0 0 0 0 0 0 0 0 3 24 146 949
59 10 O 0 0 0 0 0 0 0 0 0 0 20 316
60 | 0 O 0 0 0 0 0 0 0 0 8 46 229 1790




Table 2: Number of Trees and Distribution of Fitness

Length

Score 1 2 3 4 5 6 7 8 9 10 11 12 13 14
61 0 0 0 0 0 0 0 0 0 0 4 30 223 1435
62 0 0 0 0 0 0 0 0 0 0 0 2 29 1113
63 0 0 0 0 0 0 0 0 0 0 5 85 285 4538
64 0 0 0 0 0 0 0 0 0 0 0 1 23 337
65 0 0 0 0 0 0 0 0 0 0 0 0 53 1610
66 0 0 0 0 0 0 0 0 0 0 0 0 3 66
67 0 0 0 0 0 0 0 0 0 0 0 15 31 435
68 0 0 0 0 0 0 0 0 0 0 0 0 3 90
69 0 0 0 0 0 0 0 0 0 0 0 0 17 2394
70 0 0 0 0 0 0 0 0 0 0 0 0 0 1063
71 0 0 0 0 0 0 0 0 0 0 0 0 3 2344
72 0 0 0 0 0 0 0 0 0 0 0 0 1 18
73 0 0 0 0 0 0 0 0 0 0 0 0 7 525
74 0 0 0 0 0 0 0 0 0 0 6 42 119 868
75 0 0 0 0 0 0 0 0 0 0 0 0 0 146
76 0 0 0 0 0 0 0 0 0 0 0 0 14 174
s 0 0 0 0 0 0 0 0 0 0 4 26 113 733
78 0 0 0 0 0 0 0 0 0 0 6 34 158 991
79 0 0 0 0 0 0 0 0 0 0 4 16 137 755
80 0 0 0 0 0 0 0 0 0 0 12 104 499 3530
81 0 0 0 0 0 0 0 0 0 0 3 64 157 2126
82 0 0 0 0 0 0 0 0 0 0 2 10 60 363
83 0 0 0 0 0 0 0 0 0 0 0 60 76 1367
84 0 0 0 0 0 0 0 0 0 0 21 188 747 5559
85 0 0 0 0 0 0 0 0 0 0 3 223 459 5734
86 0 0 0 0 0 0 0 0 0 0 0 110 173 3103
87 0 0 0 0 0 0 0 0 0 0 27 194 563 3420
88 0 0 0 0 0 0 0 0 0 0 57 399 1188 6951
89 0 0 0 0 0 0 0 0 0 0 12 48 470 2676
Total 3 0 18 27 216 810 3969 20412 95256 516132 2554416 13712490 71521461 382794984
Mean 1 0 1.7 0.9 1.7 1.9 2.0 2.06903 2.24659 2.42444 2.44969 2.59006 2.70357 2.76907
SD 3.7 0 4.4 3.8 4.4 4.4 4.4  4.45867 4.57353 4.79021 4.76974 4.94338 4.98586 5.04057
Max 3 0 11 3 11 24 37 47 51 55 89 89 89 89
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Figure 3: Proportion of programs of a given length which are solutions. Error bars indicate standard

error on Monte Carlo estimates.
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Figure 2 shows that the proportion of programs with a given score is approximately constant for a
wide range of program lengths. Since the total number of programs rises rapidly, this means the number
of programs with a given score also rises rapidly with length. This confirms assumptions in [Langdon
and Poli, 1997a).

With any Monte Carlo technique there will be some stochastic error in the estimates. In the case of
rare events (such as finding a solution to the ant problem) this could be large. The stochastic error was
kept reasonable by using a large number of trials so a modest number of solutions were found at each
length (between 9 and 101 and on average 39). An estimate of the stochastic error is plotted in Figure
3 using error bars.

4 Solution of the Ant Problem

Using the probability P of finding a solution we can calculate the number of program evaluations needed
to ensure we find a solution (with probability > 1 — €). This is known as “Effort” required, cf. [Koza,
1992, page 194]:

loge
E et = R
log(1 — P)
loge
E 5"
P

Taking € as 1% we can calculate the number of fitness evaluations E required to find at least one
solution (with probability > 99%).

4.1 Uniform Random Search

Using uniform random search and taking the maximum value for P gives us a minimum figure of 450,000
for programs of length 18. However if we allow longer programs, P falls producing a corresponding rise
in F to 1,200,000 with programs of size 25 and 2,700,000 with programs of size 50 and 4,900,000 for
sizes of 500. (In the ant problem as well as reducing the chance of success, longer random programs also
require more machine resources to evaluate).

4.2 Ramped-Half-and-Half Random Search

Attempts to solve GP problems using random search have so far been unsuccessful [Koza, 1992]. For
example in the stack problem [Langdon, 1998a, page 75] the “ramped-half-and-half” method [Koza,
1992, page 93] (which is often used to create the initial populations for GP experiments) was used to
generate and test more than 49,000,000 programs random and no solutions were found.

Using the ramped-half-and-half method with a depth limit of 6, we created 20,000,000 random pro-
grams of between 3 and 242 nodes in length. Six solutions to the Ant problem were found. This gives us
an estimated E figure of 15,000,000. This is higher than the corresponding figures for uniform random
search, indicating in the Ant problem the bias in ramped-half-and-half leads it to search less favoured
regions of the program space. For example 51% of the programs it generated contained ten or fewer
nodes and thus could not be solutions to the Ant problem. (Note a high F figure need not indicate
the algorithm is poor at generating initial GP populations, which are not expected to contain solutions
but instead should contain a good mix of partial solutions). Another disadvantage of the ramped-half-
and-half method is it will sample some program repeatedly. E.g. only five of the six solutions found are
distinct from each other.

4.3 Comparison with Other Methods

Table 3 gives E values for various methods of solving the Ant problem. Rows 2-6 are from calculations
in the previous sections, row 7 is from [Koza, 1992], while rows 8 onwards have been calculated from
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Table 3: Effort to Solve Santa Fe Trail

Method E/1000
Random (len=18) 450
Random (len=25) 1,200
Random (len=50) 2,700
Random (len=500) 4,900
Ramped-half-and-half 15,000
Koza GP [Koza, 1992, page 202] 450
GP [Langdon and Poli, 1997a] 450
Subtree Mutation [Langdon and Poli, 1997b] 426
Simulated Annealing 50%-150% 748
Subtree-sized 435

Hill Climbing 50%—-150% 955
Subtree-sized 1,671

Strict Hill Climbing 50%—150% 186
Subtree-sized 738

Population (data for best) 50%-150% 266
Subtree-sized [Langdon, 1998b] 390

PDGP 336

runs previously reported which used three types of varible length subtree mutation (except the last row
using PDGP has not previously been reported).

From Table 3 it is clear that there are many techniques capable of finding solutions to the Ant problem
and although these have different performance the best typically only do marginally better than the best
performance that could be obtained with random search.

In the following sections we investigate the Ant problem fitness landscape to explain the comparitively
poor performance of these search techniques.

5 Fitness Landscape

We consider two programs in the program space to be neighbours if they have the same shape and one
can be obtained from the other just by changing one node. I.e. they are neighbours if making a point
mutation to one program produces the other. This is the simplest neighbour relationship which means
we can avoid the complications inherent in crossover operator such as GP crossover.

In the case of small programs (i.e. size 11, 12 and 13) we investigated the neighbourhoods of all the
fitter programs, i.e. those with scores above 24 (in [Langdon, 1998b] in almost all runs the best individual
found had a score better than 24). As expected this showed many neighbours are worse or much worse
(i.e. score less than 24). It also showed that many individuals with fitness between 24 and 88 are local
optima, in that none of their neighbours are fitter than them. With short programs only a few neigbours
have identical fitness.

The neighbourhoods of solutions are composed of low fitness programs. For programs of length 11
or 12, apart from programs which score 24-27 or 36, all neighbours of the solutions score < 24. ILe. if
a hill climber searching programs of length 11 or 12 finds a program scoring more than 36 we know it
will never find a solution, without restarting. (Figure 6 shows 50 runs of a variable length representation
hill climber [Langdon, 1998b] most of which became trapped at suboptimal peaks. Similar behaviour
is also seen with other search techniques such as GP). There are many more solutions of length 13 and
they are structurally and operationally more diverse. So their neighbourhoods are also much bigger and
more diverse and include programs with scores of 24-46, 52, 54, 63, 85, 87 and 88. However five times
as many have scores below 24.

For longer programs exhaustive enumeration of the landscape is not feasible and we used Monte Carlo
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Figure 4: Proportion of programs without fitter neighbours for various program lengths. (High noise
Monte Carlo estimates ignored).

sampling. As before programs of a chosen length where sampled uniformly at random. Due to the rarity
of high scoring programs only a small number (up to 19) with scores 24-89 where chosen and all their
neighbours where created and tested.

Figure 4 shows for most program sizes and most fitness values there are a large number of programs
which do not have any fitter neighbours. In contrast Figure 5 shows the average number of neighbours
with the same fitness grows with program size. These same fitness neighbours displace those that are
worse, and for the longest sizes almost all programs of intermediate fitness have a large number of
neighbours with the same score. (In the Ant problem a program of length ! has approximately 31/2
neighbours).

6 Fixed Length Schema Analysis

In this section we consider the fitness of fixed length schema [Poli and Langdon, 1997] within the program
space. Unlike conventional schema analysis we define a schema’s fitness as the mean score for all programs
matching the schema. From this analysis it is evident that typically there is a large variation of program
scores within a schema, typically the standard deviation of score is about the same as or larger than the
schema’s fitness. Thus a finite sample (such as a GA population) can only reliably be used to estimate the
fitness of a schema if it contains multiple independent samples from the schema. If the GA is to reliably
choose between schema based on its estimate of their fitness, the number of samples (i.e. programs) must
be even bigger where the schema have similar fitness. (Of course the assumption that programs are
independent is not justified after selection etc.)

The competetion between schema can be viewed as a heirarchy of competetions. The outermost level
being between different lengths, then between different shapes of the same length (hyperspaces) and
finally between different schema of the same shape. Figure 7 shows the Ant problem is difficult at the
outermost level. The region containing the highest concentration of solutions (length=18) has a fitness of
2.9 but longer programs are on average fitter than this. While the standard deviation is large compared
to the mean, a typical initial GP population is likely to be large enough to be able to reliably prefer
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Figure 7: Mean and Standard Deviation of program scores vs. length

solutions longer than 18 over those of length 18.

Figure 8 shows the distribution of schema fitness for one of the hyperspaces containing solutions
of length 11. (The other two hyperspaces are similar). Looking at the order zero schema, i.e. the
hyperspace, we see it has a fitness above the average for programs of the same length, however there are
other hyperspaces which are fitter.

Comparing schema of the same order we see, apart from order 9 (i.e. programs) there are always
schema outside the hyperspace with higher fitness. However within the hyperspace, for a given order,
the fittest schema is always one containing a solution. (Prog3 is the only function which takes three
arguments. If a program’s shape is given and it contains three way branches, then there must be a
Prog3 at these points. Le. the location of Prog3 are fixed. Therefore we exclude Prog3 from the schema
order). It was feasible to consider all schema of order 2 or less. As Figure 8 shows there are many
schema which do not contain a solution which are fitter than many of the same order that do. Also there
are small components of solutions with below average fitness. It is not until more than five components
have been assembled that all schema containing solutions have above average fitness. I.e. using a fixed
representation solutions of length 11 cannot be assembled from small building blocks (low order schema)
of above average fitness.

Turning to programs of length 12, cf. Figure 9, looking at order zero we see a similar picture to length
11: hyperspaces containing solutions have fitness above the average for programs of the same length,
however there are other hyperspaces which are fitter.

Comparing schema of the same order we see, apart from order 11 (i.e. programs) there are always
schema outside the hyperspace with higher fitness. Also (unlike length 11) within the hyperspace the
fittest schema of each order for orders 4-8 does not contain a solution. As with length 11, there are many
schema which do not contain a solution which are fitter than many of the same order that do. Also there
are small components of solutions with below average fitness. It is not until more than six components
have been assembled that all schema containing solutions have above average fitness.

Turning to programs of length 13 the situation is complicated by the much larger number of solutions
and their diverse nature. We have selected three hyperspaces which contain solutions of different types,
cf. Figures 10, 11 and 12. (Only data for schema of order, 0, 1 and 2 is available).

Looking at order zero we see a similar picture to length 12: the three selected hyperspaces have fitness
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Figure 11: Distribution of Schema fitness within a highest fitness Hyperspace of length 13 containing a
solution

above the average for programs of the same length, however (apart from the hyperspace chosen because
it has the highest fitness) there are other hyperspaces which are fitter.

Comparing schema of the same order we see there are always schema outside the hyperspace with
higher fitness (although the difference is small for the fittest hyperspace). As with lengths of 11 and
12, in two hyperspaces the fittest schema of order 0, 1, and 2 contain a solution (cf. Figures 10 and
12). However in the fittest hyperspace (Figure 11) the fittest schema of order 1 and 2 do not contain
solutions. As with lengths 11 and 12, there are many schema which do not contain a solution which are
fitter than many of the same order that do. Also there are small components of solutions with below
average fitness.

7 The Solutions

We have analysed the shorter solutions (cf. Figures 13 to 16). As we shall see all the solutions of length
11 and 12 and most of those of length 13 are variations of each other.
Figure 13 shows all the solutions of length 11. There are twelve solutions of length 11. Not only
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Figure 12: Distribution of Schema fitness within a Hyperspace of length 13 containing a (intron) solution

are they genetically distinct but they cause different behaviour by the ant. However we can recogise
certain symmetries. For example they contain pairs of ant rotate operations and it is no surprise that
these can be either pairs of Left or pairs of Right terminals. Another symmetry is that the program
consists of three parts which have to be performed in order but the ant can start with any one of the
three and still traverse the trail. Since the solution codes each of these as an argument of the root, the
root’s arguments can be rotated. Each rotation gives rise to a genetically different program, with slightly
different behaviour. Each gives rise to a different tree shape and so the 12 solutions lie in three distinct
hyperspaces.

The solutions of length 12 are the same as those of length 11. They are made one node longer by
replacing a single Prog3 function with two Prog2 (cf. Figure 14). There are a total of four ways of
doing this for each solution of length 11 giving rise to 48 solutions of length. While these are genetically
distinct from each other and the solutions of length 11 they represent identical behaviour. There are 12
tree shapes (hyperspaces) each containing 4 solutions.

Extending this we can see that there must also be 48 solutions of length 13 created by replacing both
Prog3 with Prog2 (there are four ways of arranging the Prog2). However there are other ways to make
use of the available space to represent the same solutions. This is done by adding introns. Each of the
non-Prog3 nodes can be replaced by an IfFoodAhead one of whose arguments is the previous node (and
its arguments) and the other is either a terminal which is identical to the other argument or is never
executed (cf. Figure 15). Most solutions of length 13 are of this type.

Thirteen nodes allow solutions of a different type which consecutively performs two moves before
looking for food (cf. Figure 16). Again there is symmetry in that the ant can be rotated either to the
right or to the left but whichever is done first the opposite must be done in the later part of the program.
This give rise to programs of the same shape with the same score. The program now consists of five
parts which have to be executed in the correct order but, as with solutions of length 11, it does not
matter which is first. Fach of these five orderings gives rise to a different behaviour but each traverse
the trail. (However they take slightly different amounts of energy to do so. Including energy as part of
the fitness measure would give a means of breaking the symmetry of these solutions). Additionally there
are three ways to arrange the arguments of the two Prog3 which are functionally identical. Each of these
rearrangements yields solutions of different shapes.

Most of the other solutions of length 13 also perform two consecutive Move operations. These and
the remaining solution of length 13 have less symmetry and are fewer in number.
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Figure 13: Solutions of length 11. z and y can be either Left or Right and the three arguments of the
root can be rotated, giving 12 solutions.
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Figure 14: Solutions of length 12. Like solutions of length 11 (z and y can be either Left or Right, the

three arguments of the root can be rotated) additionally one Prog3 is replaced by two Prog2 giving
48 solutions.
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Figure 15: Intron solution of length 13. Like solutions of length 11 (z and y can be either Left or
Right, the three arguments of the root can be rotated) and the = can be any terminal as it is never
executed.
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Figure 16: Solutions of length 13 performing two Moves. z can be either Left or Right but then z’

must rotate in the opposite direction, again the arguments of the root can be rotated and there are
equivelent ways to order the arguments of the two Prog3.
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8 Discussion

From the previous sections it is clear that the Ant problem has the features often suggested of real
program spaces. The program space is large and, using the simplest neighbour relationship, forms a
Karst landscape containing many false peaks and many plateaus riven with deep valleys. It is clear
from an analysis of the simplest solutions that there are multiple distinct and conflicting solutions to
the problem, some arising from symmetries in the primitive set and some from the problem itself. The
landspace is riddled with neutral networks linking programs of the same fitness in a dense and suffocating
labyrinth.

A limited analysis of the schema indicates the problem is deceptive at all levels. Longer programs
are on average slightly fitter but contain a slightly lower density of solutions. There are hyperspaces
which do not contain solutions which are fitter than those of the same length which do. There are low
and middle order schema which are required to build solutions but which are below average fitness.
Schema typically have a high fitness variance. This means practical sized samples give noisy estimates
of their fitness, leading GAs to choose between them randomly. However the fitness of low order schema
may be estimated more reliably (as GA populations can contain many instances of them). Where
they are deceptive, this may lead a GA to discard them. (Extinction of complete primitives was seen
in the list and stack problems [Langdon, 1998a, Chapter 6 and 8]). If real program spaces have these
characteristics (we expect them to do so but be still worse) then it is important to be able to demonstrate
scaleable techniques on such problem spaces. The Santa Fe trail provides a tractable problem for such
demonstrations. From Table 3 it is obvious that current techniques are not doing well on it.

We have only considered the simplest solutions using a fixed representation but we have shown they
cannot be assembled from small components of above average fitness (i.e. building blocks). Indeed many
constructs which a human programmer might use when constructing solutions have below average fitness.
However it is possible building blocks of above average fitness which GP uses exist and longer solutions
can be constructed from them. Their assembly may be eased by exploiting the variable length of the
representation.

Current GP techniques are not exploiting the symmetries of the problem. These lead to essentially
the same solutions appearing to be the opposite of each other. Eg. either a pair of Right or pair of Left
terminals at a particular location may be important. If the search technique does not recognise them as
the same thing it may spend a lot of effort trying to decide between them, when perhaps either would
do (cf. “competing conventions” in artificial neural networks). A possibly useful approach is to break
this symmetry (e.g. by putting more of one primitive in the initial population) to bias the technique so
that it chooses one option quickly. The tangled network of programs with same fitness which consumes
much machine resources by promoting bloat might also be addressed by introducing a small bias. In the
Ant problem we would expect a slight bias in favour of shorter programs to be beneficial as solutions are
more frequent when programs are short.

It is clear the Ant problem is essentially difficult because of the large number of local optima. These
are created by the combination of the representation, the neighbour operator and the fitness function.
While there may be improvements to the representation or better search techniques we should also
consider the fitness function, particularly how we reward partial solutions.

9 Conclusions

We have started an examination of the program space of a GP benchmark problem. We have shown that
there are many distinct solutions to the problem and the density of solutions in the program space is
unexpectedly high. Indeed genetic programming and other search techniques do not perform enormously
better than random search. Using the program landscape and schema analysis we have shown why the
artificial ant following the Santa Fe trail problem is difficult for these search techniques and these suggest
reasons why the Ant problem may be indicative of real problem spaces and so be worthy of further study.
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