
Why Ants are HardW. B. Langdon and R. PoliSchool of Computer Science, The University of Birmingham, Birmingham B15 2TT, UKfW.B.Langdon,R.Polig@cs.bham.ac.uk http://www.cs.bham.ac.uk/~wbl, ~rmpTel: +44 (0) 121 414 4791, Fax: +44 (0) 121 414 4281Technical Report: CSRP-98-4January 1998AbstractThe problem of programming an arti�cial ant to follow the Santa Fe trail is used as an exampleprogram search space. Analysis of shorter solutions shows they have many of the characteristicsoften ascribed to manually coded programs. Enumeration of a small fraction of the total searchspace and random sampling characterise it as rugged with many multiple plateaus split by deepvalleys and many local and global optima. This suggests it is di�cult for hill climbing algorithms.Analysis of the program search space in terms of �xed length schema suggests it is highly deceptiveand that for the simplest solutions large building blocks must be assembled before they have aboveaverage �tness. In some cases we show solutions cannot be assembled using a �xed representationfrom small building blocks of above average �tness. These suggest the Ant problem is di�cult forGenetic Algorithms.Random sampling of the program search space suggests on average the density of global optimachanges only slowly with program size but the density of neutral networks linking points of the same�tness grows approximately linearly with program length. This is part of the cause of bloat.Previously reported genetic programming, simulated annealing and hill climbing performance isshown not to be much better than random search on the Ant problem.1 IntroductionThere have often been claims that automatic programming is hampered by the nature of program spaces.These are undoubtedly large [Koza, 1992, page 2] and, it often claimed, badly behaved with littleperformance relationship between similar programs [O'Reilly, 1995, page 8]. In this paper we present asystematic exploration of the program space of a commonly used benchmark problem (Sections 2 and 3).In Section 4 we calculate the number of �tness evalutions required by two types of random search toreliably solve the problem and then compare this with results for genetic programming (GP) and othersearch techniques. This shows most of these techniques have broadly similar performance, both to eachother and to the best performance of totally random search.This prompts us to consider the �tness landscape (Section 5) and schema �tness and building blocks(Section 6) with a view to explaining why these techniques perform badly and to �nd improvements tothem. In Section 7 we described the simpler solutions. Their various symmetries and redundancies meanessentially the same solution can be represented in an unexpectedly large number of di�erent programs.Finally in Section 8 we consider why the problem is important and how we can exploit what we havelearnt and in Section 9 we give our conclusions.2 The Arti�cial Ant ProblemThe arti�cial ant problem [Koza, 1992, pages 147{155] is a well studied problem often used as a GPbenchmark. Brie
y the problem is to devise a program which can successfully navigate an arti�cial antalong a twisting trail on a 32�32 toroidal grid. The program can use three operations, Move, Right andLeft, to move the ant forward one square, turn to the right or turn to the left. Each of these operationstakes one time unit. The sensing function IfFoodAhead looks into the square the ant is currently facing1



Table 1: Ant ProblemTerminal set: Left, Right, MoveFunctions set: IfFoodAhead, Prog2, Prog3Fitness cases: The Santa Fe trailFitness: Food eatenWrapper: Program repeatedly executed for 600 time steps.and then executes one of its two arguments depending upon whether that square contains food or isempty. Two other functions, Prog2 and Prog3, are provided. These take two and three argumentsrespectively which are executed in sequence.The arti�cial ant must follow the \Santa Fe trail", which consists of 144 squares with 21 turns. Thereare 89 food units distributed non-uniformly along it. Each time the ant enters a square containing foodthe ant eats it. The amount of food eaten is used as the �tness measure of the control program.The �tness function, function and terminal sets etc. we use are identical to [Langdon and Poli, 1997a]cf. Table 1.3 Size of Program and Solution SpaceThe number of di�erent programs of a speci�c length is given by the size of the terminal set and thenumbers of di�erent functions in the function set of each arity (branching factor). To create a tree of aspeci�c length a corresponding number of functions of each branching factor and number of leafs mustbe used. Where there are more than one branching factor available in the function set, there may bemultiple combinations of function arity which give rise to a tree of the required size. In general there aremultiple ways of arranging the branches and leafs. Each way gives rise to a distinct tree shape. Finally,where there are more than one terminal or more than one function of a given arity, there are multipleprograms of the same shape. The number of di�erent programs in the ant problem is plotted againsttheir lengths in Figure 1 (and is tabulated in the \Total" row at the bottom of Table 2). As expected thenumber of programs grows approximately exponentially with the length of the programs. (The programused to calculate the number of programs is available via anonymous ftp from ftp.cs.bham.ac.uk inpub/authors/W.B.Langdon/gp-code/ntrees.cc).For the shorter programs it is feasible to explore the program space exhaustively. Table 2 summarisesthe programs space up to programs of length 14. Table 2 shows the program space is highly asymmetricwith almost all programs having very low scores and the proportion with higher scores falling rapidly(but not monotonically) to a low point near 72. Above 72 it rises slightly. The modal score is zero, themedian is one and the mean rises with length from 1 to 2.7 while the standard deviation remains near4 (cf. Figure 7). There is some dependence upon program length and, as expected, programs must beabove a minimum size to reach modest scores. However above the minimum size the number of programswith a given score rises rapidly, being a roughly constant proportion of the total number of programs.There are an unexpectedly high number of solutions (albeit a tiny fraction of the total) and their numbersimilarly grows with program size.For longer programs exhaustive search is not feasible and instead we sampled the program spacerandomly in a series of Monte Carlo trials for a number of program sizes. For each such size between10,000,000 random programs where generated and tested. The random programs where chosen uniformlyfrom the set of possible programs of the speci�c length using the bijective random tree creation algorithmdescribed in [Alonso and Schott, 1995, Chapter 4]. Where there are multiple di�erent combinations offunction arity which give rise to trees of the required size, one was chosen at random in proportion tothe number of trees it contains. Each tree was converted to a program by labelling each of its nodeswith a function or terminal of the correct arity chosen uniformly at random from those that match inthe function or terminal set. In this way we ensure every program of the speci�ed length has the samechance of being chosen. 2
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Figure 3: Proportion of programs of a given length which are solutions. Error bars indicate standarderror on Monte Carlo estimates. 5



Figure 2 shows that the proportion of programs with a given score is approximately constant for awide range of program lengths. Since the total number of programs rises rapidly, this means the numberof programs with a given score also rises rapidly with length. This con�rms assumptions in [Langdonand Poli, 1997a].With any Monte Carlo technique there will be some stochastic error in the estimates. In the case ofrare events (such as �nding a solution to the ant problem) this could be large. The stochastic error waskept reasonable by using a large number of trials so a modest number of solutions were found at eachlength (between 9 and 101 and on average 39). An estimate of the stochastic error is plotted in Figure3 using error bars.4 Solution of the Ant ProblemUsing the probability P of �nding a solution we can calculate the number of program evaluations neededto ensure we �nd a solution (with probability � 1 � �). This is known as \E�ort" required, cf. [Koza,1992, page 194]: E = log �log(1� P )E � � log �PTaking � as 1% we can calculate the number of �tness evaluations E required to �nd at least onesolution (with probability � 99%).4.1 Uniform Random SearchUsing uniform random search and taking the maximum value for P gives us a minimum �gure of 450,000for programs of length 18. However if we allow longer programs, P falls producing a corresponding risein E to 1,200,000 with programs of size 25 and 2,700,000 with programs of size 50 and 4,900,000 forsizes of 500. (In the ant problem as well as reducing the chance of success, longer random programs alsorequire more machine resources to evaluate).4.2 Ramped-Half-and-Half Random SearchAttempts to solve GP problems using random search have so far been unsuccessful [Koza, 1992]. Forexample in the stack problem [Langdon, 1998a, page 75] the \ramped-half-and-half" method [Koza,1992, page 93] (which is often used to create the initial populations for GP experiments) was used togenerate and test more than 49,000,000 programs random and no solutions were found.Using the ramped-half-and-half method with a depth limit of 6, we created 20,000,000 random pro-grams of between 3 and 242 nodes in length. Six solutions to the Ant problem were found. This gives usan estimated E �gure of 15,000,000. This is higher than the corresponding �gures for uniform randomsearch, indicating in the Ant problem the bias in ramped-half-and-half leads it to search less favouredregions of the program space. For example 51% of the programs it generated contained ten or fewernodes and thus could not be solutions to the Ant problem. (Note a high E �gure need not indicatethe algorithm is poor at generating initial GP populations, which are not expected to contain solutionsbut instead should contain a good mix of partial solutions). Another disadvantage of the ramped-half-and-half method is it will sample some program repeatedly. E.g. only �ve of the six solutions found aredistinct from each other.4.3 Comparison with Other MethodsTable 3 gives E values for various methods of solving the Ant problem. Rows 2{6 are from calculationsin the previous sections, row 7 is from [Koza, 1992], while rows 8 onwards have been calculated from6



Table 3: E�ort to Solve Santa Fe TrailMethod E=1000Random (len=18) 450Random (len=25) 1,200Random (len=50) 2,700Random (len=500) 4,900Ramped-half-and-half 15,000Koza GP [Koza, 1992, page 202] 450GP [Langdon and Poli, 1997a] 450Subtree Mutation [Langdon and Poli, 1997b] 426Simulated Annealing 50%{150% 748Subtree-sized 435Hill Climbing 50%{150% 955Subtree-sized 1,671Strict Hill Climbing 50%{150% 186Subtree-sized 738Population (data for best) 50%{150% 266Subtree-sized [Langdon, 1998b] 390PDGP 336runs previously reported which used three types of varible length subtree mutation (except the last rowusing PDGP has not previously been reported).From Table 3 it is clear that there are many techniques capable of �nding solutions to the Ant problemand although these have di�erent performance the best typically only do marginally better than the bestperformance that could be obtained with random search.In the following sections we investigate the Ant problem �tness landscape to explain the comparitivelypoor performance of these search techniques.5 Fitness LandscapeWe consider two programs in the program space to be neighbours if they have the same shape and onecan be obtained from the other just by changing one node. I.e. they are neighbours if making a pointmutation to one program produces the other. This is the simplest neighbour relationship which meanswe can avoid the complications inherent in crossover operator such as GP crossover.In the case of small programs (i.e. size 11, 12 and 13) we investigated the neighbourhoods of all the�tter programs, i.e. those with scores above 24 (in [Langdon, 1998b] in almost all runs the best individualfound had a score better than 24). As expected this showed many neighbours are worse or much worse(i.e. score less than 24). It also showed that many individuals with �tness between 24 and 88 are localoptima, in that none of their neighbours are �tter than them. With short programs only a few neigbourshave identical �tness.The neighbourhoods of solutions are composed of low �tness programs. For programs of length 11or 12, apart from programs which score 24{27 or 36, all neighbours of the solutions score < 24. I.e. ifa hill climber searching programs of length 11 or 12 �nds a program scoring more than 36 we know itwill never �nd a solution, without restarting. (Figure 6 shows 50 runs of a variable length representationhill climber [Langdon, 1998b] most of which became trapped at suboptimal peaks. Similar behaviouris also seen with other search techniques such as GP). There are many more solutions of length 13 andthey are structurally and operationally more diverse. So their neighbourhoods are also much bigger andmore diverse and include programs with scores of 24{46, 52, 54, 63, 85, 87 and 88. However �ve timesas many have scores below 24.For longer programs exhaustive enumeration of the landscape is not feasible and we used Monte Carlo7
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Figure 5: Mean number of neighbours with same score for various program lengths.
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Figure 12: Distribution of Schema �tness within a Hyperspace of length 13 containing a (intron) solutionare they genetically distinct but they cause di�erent behaviour by the ant. However we can recogisecertain symmetries. For example they contain pairs of ant rotate operations and it is no surprise thatthese can be either pairs of Left or pairs of Right terminals. Another symmetry is that the programconsists of three parts which have to be performed in order but the ant can start with any one of thethree and still traverse the trail. Since the solution codes each of these as an argument of the root, theroot's arguments can be rotated. Each rotation gives rise to a genetically di�erent program, with slightlydi�erent behaviour. Each gives rise to a di�erent tree shape and so the 12 solutions lie in three distincthyperspaces.The solutions of length 12 are the same as those of length 11. They are made one node longer byreplacing a single Prog3 function with two Prog2 (cf. Figure 14). There are a total of four ways ofdoing this for each solution of length 11 giving rise to 48 solutions of length. While these are geneticallydistinct from each other and the solutions of length 11 they represent identical behaviour. There are 12tree shapes (hyperspaces) each containing 4 solutions.Extending this we can see that there must also be 48 solutions of length 13 created by replacing bothProg3 with Prog2 (there are four ways of arranging the Prog2). However there are other ways to makeuse of the available space to represent the same solutions. This is done by adding introns. Each of thenon-Prog3 nodes can be replaced by an IfFoodAhead one of whose arguments is the previous node (andits arguments) and the other is either a terminal which is identical to the other argument or is neverexecuted (cf. Figure 15). Most solutions of length 13 are of this type.Thirteen nodes allow solutions of a di�erent type which consecutively performs two moves beforelooking for food (cf. Figure 16). Again there is symmetry in that the ant can be rotated either to theright or to the left but whichever is done �rst the opposite must be done in the later part of the program.This give rise to programs of the same shape with the same score. The program now consists of �veparts which have to be executed in the correct order but, as with solutions of length 11, it does notmatter which is �rst. Each of these �ve orderings gives rise to a di�erent behaviour but each traversethe trail. (However they take slightly di�erent amounts of energy to do so. Including energy as part ofthe �tness measure would give a means of breaking the symmetry of these solutions). Additionally thereare three ways to arrange the arguments of the two Prog3 which are functionally identical. Each of theserearrangements yields solutions of di�erent shapes.Most of the other solutions of length 13 also perform two consecutive Move operations. These andthe remaining solution of length 13 have less symmetry and are fewer in number.13
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8 DiscussionFrom the previous sections it is clear that the Ant problem has the features often suggested of realprogram spaces. The program space is large and, using the simplest neighbour relationship, forms aKarst landscape containing many false peaks and many plateaus riven with deep valleys. It is clearfrom an analysis of the simplest solutions that there are multiple distinct and con
icting solutions tothe problem, some arising from symmetries in the primitive set and some from the problem itself. Thelandspace is riddled with neutral networks linking programs of the same �tness in a dense and su�ocatinglabyrinth.A limited analysis of the schema indicates the problem is deceptive at all levels. Longer programsare on average slightly �tter but contain a slightly lower density of solutions. There are hyperspaceswhich do not contain solutions which are �tter than those of the same length which do. There are lowand middle order schema which are required to build solutions but which are below average �tness.Schema typically have a high �tness variance. This means practical sized samples give noisy estimatesof their �tness, leading GAs to choose between them randomly. However the �tness of low order schemamay be estimated more reliably (as GA populations can contain many instances of them). Wherethey are deceptive, this may lead a GA to discard them. (Extinction of complete primitives was seenin the list and stack problems [Langdon, 1998a, Chapter 6 and 8]). If real program spaces have thesecharacteristics (we expect them to do so but be still worse) then it is important to be able to demonstratescaleable techniques on such problem spaces. The Santa Fe trail provides a tractable problem for suchdemonstrations. From Table 3 it is obvious that current techniques are not doing well on it.We have only considered the simplest solutions using a �xed representation but we have shown theycannot be assembled from small components of above average �tness (i.e. building blocks). Indeed manyconstructs which a human programmer might use when constructing solutions have below average �tness.However it is possible building blocks of above average �tness which GP uses exist and longer solutionscan be constructed from them. Their assembly may be eased by exploiting the variable length of therepresentation.Current GP techniques are not exploiting the symmetries of the problem. These lead to essentiallythe same solutions appearing to be the opposite of each other. Eg. either a pair of Right or pair of Leftterminals at a particular location may be important. If the search technique does not recognise them asthe same thing it may spend a lot of e�ort trying to decide between them, when perhaps either woulddo (cf. \competing conventions" in arti�cial neural networks). A possibly useful approach is to breakthis symmetry (e.g. by putting more of one primitive in the initial population) to bias the technique sothat it chooses one option quickly. The tangled network of programs with same �tness which consumesmuch machine resources by promoting bloat might also be addressed by introducing a small bias. In theAnt problem we would expect a slight bias in favour of shorter programs to be bene�cial as solutions aremore frequent when programs are short.It is clear the Ant problem is essentially di�cult because of the large number of local optima. Theseare created by the combination of the representation, the neighbour operator and the �tness function.While there may be improvements to the representation or better search techniques we should alsoconsider the �tness function, particularly how we reward partial solutions.9 ConclusionsWe have started an examination of the program space of a GP benchmark problem. We have shown thatthere are many distinct solutions to the problem and the density of solutions in the program space isunexpectedly high. Indeed genetic programming and other search techniques do not perform enormouslybetter than random search. Using the program landscape and schema analysis we have shown why thearti�cial ant following the Santa Fe trail problem is di�cult for these search techniques and these suggestreasons why the Ant problem may be indicative of real problem spaces and so be worthy of further study.15
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